278 research outputs found

    Ethynyl and substituted ethynyl-terminated polysulfones

    Get PDF
    Ethynyl and substituted ethynyl-terminated polysulfones and a process for preparing the same are disclosed. These polysulfones are thermally cured to induce cross-linking and chain extension, producing a polymer system with improved solvent resistance and use temperature. Also disclosed are substituted 4-ethynylbenzoyl chlorides as precursors to the substituted ethynyl-terminated polysulfones and a process for preparing the same

    Phenoxy resins containing pendent ethynyl groups and cured resins obtained therefrom

    Get PDF
    Phenoxy resins containing pendent ethynyl groups, the process for preparing the same, and the cured resin products obtained therefrom are disclosed. Upon the application of heat, the ethynyl groups react to provide branching and crosslinking with the cure temperature being lowered by using a catalyst if desired but not required. The cured phenoxy resins containing pendent ethynyl groups have improved solvent resistance and higher use temperature than linear uncrosslinked phenoxy resins and are applicable for use as coatings, films, adhesives, composited matrices and molding compounds

    Polyphenylquinoxalines containing pendant phenylethynyl and ethynyl groups

    Get PDF
    Poly(phenylquinoxaline) prepolymers containing pendant phenylethynyl and ethynyl groups are disclosed along with the process for forming these polymers. Monomers and the process for producing same that are employed to prepare the polymers are also disclosed

    Ethynyl and substituted ethynyl-terminated polysulfones

    Get PDF
    Ethynyl and substituted ethynyl-terminated polysulfones and their synthesis are disclosed. These polysulfones are thermally cured to induce cross-linking and chain extension, producing a polymer system with improved solvent resistance and use temperatures. Also disclosed are substituted 4-ethynylbenzoyl chlorides as precursors to the substituted ethynyl-terminated polysulfones and a process for preparing the same

    Development of space stable semitransparent polyquinoxaline films

    Get PDF
    Three polyphenylquinoxalines underwent preliminary study for potential use as coatings on aircraft and spacecraft. These polymers were prepared from the reaction of 3,3 prime, 4,4 prime-tetraaminodiphenyl ether with p,p prime-oxydibenzil and with m -bis (phenylglyoxalyl) benzene and from the reaction of 3,3 prime, 4,4 prime-tetraaminodiphenylsulfone with p,p prime-oxydibenzil. High purity reactants and solvents were used in polymer preparation to minimize color in the polymer films. High molecular weight polymers were prepared at ambient temperature at 12 to 15 percent concentration by upsetting the stoichiometry by 0.5 to 1.0 percent in favor of the bis (1,2-dicarbonyl) reactant. A portion of each polymer was endcapped with benzil and with o-phenylenediamine. Certain properties of the endcapped and unendcapped versions of each polymer are compared. Uniform films of 2.0 and 0.1 mil thickness were cast from solutions of the unendcapped and endcapped versions of each of the three polymers

    Condensation polyimides

    Get PDF
    Polyimides belong to a class of polymers known as polyheterocyclics. Unlike most other high temperature polymers, polyimides can be prepared from a variety of inexpensive monomers by several synthetic routes. The glass transition and crystalline melt temperature, thermooxidative stability, toughness, dielectric constant, coefficient of thermal expansion, chemical stability, mechanical performance, etc. of polyimides can be controlled within certain boundaries. This versatility has permitted the development of various forms of polyimides. These include adhesives, composite matrices, coatings, films, moldings, fibers, foams and membranes. Polyimides are synthesized through both condensation (step-polymerization) and addition (chain growth polymerization) routes. The precursor materials used in addition polyimides or imide oligomers are prepared by condensation method. High molecular weight polyimide made via polycondensation or step-growth polymerization is studied. The various synthetic routes to condensation polyimides, structure/property relationships of condensation polyimides and composite properties of condensation polyimides are all studied. The focus is on the synthesis and chemical structure/property relationships of polyimides with particular emphasis on materials for composite application

    A new readily processable polyimide

    Get PDF
    As part of an effort to develop tough solvent resistance thermoplastics for potential use as structural resins on aerospace vehicles, a new processable polyimide was evaluated. The synthesis involved the reaction of a new diamine, 1,3-bis 2-(3-aminophenoxy)ethyl ether, with 3,3',4,4'-benzophenonetetracarboxylic dianhydride to form the polyamic acid and subsequent conversion of it to the polyimide. Various physical properties such as thermal stability, solvent resistance, glass transition temperature, crystalline melt temperature, melt viscosity and mechanical properties such as fracture toughness, adhesive, film and composite properties are reported. Of particular interest is the extremely high titanium to titanium tensile shear strength obtained for this polyimide

    Synthesis of imide/arylene ether copolymers for adhesives and composite matrices

    Get PDF
    A series of imide/arylene ether copolymers were prepared from the reaction of an amorphous arylene ether oligomer and a semi-crystalline imide oligomer. These copolymers were thermally characterized and mechanical properties were measured. One block copolymer was endcapped and the molecular weight was controlled to provide a material that displayed good compression moldability and attractive adhesion and composite properties

    Preparation of atomic oxygen resistant polymeric materials

    Get PDF
    Polyphenyl quinoxalines (PPQs) are an important family of high performance polymers that offer good chemical and thermal stability coupled with excellent mechanical properties. These aromatic heterocyclic polymers are potentially useful as films, coatings, adhesives, and composite materials that demand stability in harsh environments. Our approach was to prepare PPQs with pendent siloxane groups using the appropriate chemistry and then evaluate these polymers before and after exposure to simulated atomic oxygen. Either monomer, the bis(o-diamine)s or the bis(alpha-diketone)s can be synthesized with a hydroxy group to which the siloxane chain will be attached. Several novel materials were prepared

    Development of polyphenylquinoxaline graphite composites

    Get PDF
    The potential of polyphenylquinoxaline (PPQ)/graphite composites to serve as structural material at 316 C (600 F)has been demonstrated using a block copolymer, BlCo(13), PPQ derivative. Initially, thirteen polyphenylquinoxalines were evaluated. From this work, four candidate polymers were selected for preliminary evaluation as matrices for HMS graphite fiber reinforced composites. The preliminary composite evaluation enabled selection of one of the four polymers for advanced composite preparation and testing. Using an experimentally established cure schedule for each of the four polymers, preliminary laminates of 50% resin volume content, prepared without postcure, were tested for flexure strength and modulus, interlaminar shear strength (short beam), and tensile strength and modulus at ambient temperature. A block copolymer (Bl Co 13) derived from one mole p-bis (phenylglyoxalyl) benzene, one fourth mole 3,3'-diaminobenzidine and three-fourths mole 3,3', 4,4'-tetraminobenzophenone was selected for extensive study. Tensile, flexural, and interlaminar shear values were obtained after aging and testing postcured BlCo(13) laminates at 316 C (600 F). The potential of PPQ/graphite laminates to serve as short term structural materials at temperatures up to 371 C (700 F) was demonstrated through weight loss experiments
    corecore